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1 Introduction 
In order to understand and debug the performance characteristics of high-performance 
distributed applications, units of precisely time-stamped information, or “events” , are 
collected from the distributed components of the application itself, the network links, and 
the middleware and operating system services used by the application components at 
each host. In order to reduce the work of analyzing the resulting data, the events are sent 
over the network to a central “collector” daemon. Thus, monitoring results can be 
processed and viewed on a single host without the need to go out onto the network and 
aggregate the various log files. The NetLogger Toolkit (http://www-
didc.lbl.gov/NetLogger/) has been built around this basic methodology of precision time-
stamps and automatic aggregation. 
 
For several reasons, minimizing both the number of bytes transmitted on the network and 
the number of CPU cycles used to transmit them can be crucial to the effectiveness of a 
monitoring system. First, the amount of time used creating and sending a single event 
limits the maximum granularity of instrumentation: if it takes N nanoseconds to send an 
event, the tightest loop that can be instrumented with minimal (1%) perturbation of the 
application is N*100 nanoseconds per iteration. The size of the events when transmitted 
over the network to the “collector” also limits the instrumentation, particularly in data-
intensive applications where bursts of application activity cause bursts of both application 
data and monitoring data. In order to avoid exacerbation of precisely the types of network 
problems that are being debugged, the bandwidth consumed by the monitoring data 
should be at least one, and probably two, orders of magnitude less than the application’s. 
Finally, the number of bytes used for each event determines the maximum flow of events 
that can be processed by a single collector daemon; if the daemon is overrun on a reliable 
(TCP) connection, the sender (presumably an application component) will eventually 
stall while writing the monitoring information. Although systems like Kangaroo 
(http://www.cs.wisc.edu/condor/kangaroo/) could help with receiver-limited systems, this 
remains an important limitation, especially for real-time monitoring and analysis. 
 
Monitoring and application instrumentation data have two important characteristics that 
conflict with the desire for complete eff iciency. First, the types of events are dynamic, 
both within one sender, and from one sender to the next. Thus the number of bytes for an 
event is variable and, in practical terms, the application cannot simply “compile in” the 
memory layout of the messages, as would be done for a fixed binary protocol. Second, 
the monitoring events themselves may be transient; this is particularly true for application 
instrumentation, where successive debugging iterations may add, remove, or change 
many of the events generated by identical runs of the application. This requires that the 
overhead of adding or removing events in the code be very low – hopefully no higher 
than the language’s print statement. Unfortunately, these factors prevented the use of 
very powerful and eff icient binary I/O libraries such as PBIO 



(http://www.cc.gatech.edu/systems/projects/PBIO/), which require that a separate C 
struct be declared and compiled into the application for each type of event. 
 
In this white paper, we present a binary encoding for dynamic event types that attempts to 
minimize sender CPU cycles and the amount of bytes transmitted on the network. This 
encoding has been incorporated into the NetLogger Toolkit, which provides APIs in eight 
languages: C, C++, Fortran77, Fortran90, Java, Perl, Python, and TCL. 
 

2 Terminology 
The term “event” has already been defined in passing as a unit of precisely time-stamped 
information. It should be noted that the more common definition of “event” as an 
indication of a change in state does not necessarily apply; the criteria for event generation 
are application-dependent. 
 
In this paper, the process that writes the formatted bytes for an event onto the network 
will be called the “sender” , and the host that process lives on will be called the “sending 
host” . Similarly, the event collector will be called the “receiver” and the event collector’s 
host, the “receiving host” . 

3 Event Model 
The model of an “event” used here is very simple: an identifier, a time-stamp, and zero or 
more name, type, and value tuples, called “ fields” . In all cases, the ‘name’ is an array of 
octets that is not further interpreted, thus allowing Unicode or numeric values as well as 
ASCII strings. The ‘ identifier’ provides a sender-unique identifier for the event. The 
‘ type’ indicates the data type of the value; so far Integer, Float, and String are supported. 
Zero or more of the fields may be designated as ‘constants’ , that is, their values will not 
change between events with the same identifier. The order and type of the non-constant 
fields also does not change between events with the same identifier. 
 
In the encoding described below, many size limitations were imposed on the event 
model, mostly for the sake of eff iciency. This was done on the assumption that a single 
event will commonly be used to transmit only a few (non-constant) numeric or string 
values. In our experience, this is true for most application instrumentation and many 
types of system monitoring. A summary of the limitations is shown below. 
 

Event Model Element Limitation 
Total size, header + body 128K 
Total number of f ields 255 
Maximum length of any field 255 bytes 
Maximum length of any field name 255 bytes 
Timestamp 8 bytes 
Number of basic data types 256 

 



Given these limitations, it would be impossible to represent even a medium-sized time 
series within a single event; instead each set of measurements for the time series would 
have to be transmitted separately. The tradeoff is that small events, such as counters, 
block identifiers, and “number of bytes so far” , are very eff icient. 
 
Note that the event model here is tied to the idea of a sender and receiver, and in 
particular the identifier must only be unique to a given sender. This means that if events 
from multiple senders are mixed together, additionally identifying information is needed 
to distinguish between their respective “unique” identifiers. 

4 Binary Event Encoding 
The event is formatted in two parts: the first is called the ‘header’ and the second is called 
the ‘body’ . For a given sender, the header is written once per event identifier, and the 
body is written for every event. Because the number of distinct event identifiers is 
expected to be quite small compared to the total number of events sent, eff icient routines 
for formatting and sending the body are more important than for the header. 
 
This section will describe the data type (common to the header and body), header, and 
body formats. 

4.1 Data Type Formats 
 
There are only three data types defined so far: INT, FLOAT, and STRING. The 
capitalized names will be used to distinguish these from data types of the same name in 
programming languages. 
 

o INT – A 32-bit signed integer 
o FLOAT – A 4-byte signed floating point number in standard IEEE format. 
o STRING – A one-byte length followed by 0 to 255 octets 

 
The data is always sent in the sender’s byte order, a style of data transmission known as 
“ receiver makes right” . This provides maximum eff iciency for the sender at the cost of 
some added complexity (and, to a lesser extent, lost eff iciency) at the receiver. 
 
The first planned extensions to these types are unsigned 4-byte integer and floating point 
numbers, both signed and unsigned 8-byte integer and floating-point numbers, and signed 
and unsigned 2-byte integers. 

4.2 Header Encoding 
 
The header consists of a length, a minor and major version number, an identifier, an 
architecture code, the number of f ields and constant fields, a li st of f ield names and types, 
and finally the constant values for the constant fields. The exact byte layout is shown in 
Table 1. 



Table 1: Header Encoding 

Byte 
0 1 2 3 4 5 6 7 

 

Contents 

Length 1 major 
version 
 

Minor 
version 

Identifier 

Byte 8 9 10 11 .. 11+N 11+N .. 11+M+N 

Contents 

arch 

# of 
fields 
 

# of 
consts 
 

Field names Constant values 

 
o Length – The length of the entire header, including the 2 bytes for the length 

itself. 
o Major version – The first bit of the major version is used as a “header” flag, so it 

is always ‘1’ in the header. The number formed by the other 7 bits starts counting 
at 1, with 0 reserved for experimental versions. 

o Minor version – Just an 8-bit (unsigned) number 
o Identifier – 32-bit unsigned integer 
o Arch – A code for (sending) architecture type. This is a bitwise OR of f lags. 

Currently the only flag is big/littl e endian.  
o # of Fields – The total number of f ields, including constants that will be in this 

and every successive body message 
o # of Consts – The number of f ields that have constant values 
o Field Names – The name (a STRING) of each field. The constant fields are 

always listed before the non-constant ones, and in the same order as the Constant 
Values. 

o Constant Values – The type and value of each constant, in the same order as the 
Field Names.  

 
The header does not include a timestamp because the header and the first body are sent at 
almost the same time, and the body (see below) has a timestamp already. 

4.3 Body Encoding 
 
The body consists of  a length, a major and minor version, an identifier, a timestamp, and 
the values for the non-constant fields declared in the header. 
 

Table 2: Body Encoding 

Byte 0 1 2 3 4 5 6 7 

Contents Length 0 
major 

version 
Minor 
version 

Identifier 



Byte 8 9 10 11 12 13 14 15 

Contents time-stamp, seconds time-stamp, fractional seconds 

Byte 16 .. 16+N 

Contents Field values 

 
o Length – The length of the entire header, including the 2 bytes for the length 

itself. 
o Major version – The first bit of the major version is used as a “header” flag, so it 

is always ‘0’ in the body. The number formed by the other 7 bits starts counting at 
1, with 0 reserved for experimental versions. 

o Minor version – Just an 8-bit (unsigned) number 
o Identifier – 32-bit unsigned integer 
o Time-stamp, seconds – Same as integer part of NTP time-stamp 
o Time-stamp, fractional seconds – Same as fractional part of NTP time-stamp 
o Field values – One byte indicating a type followed by the value (the length of the 

value is part of the type itself, as this information is not needed for fixed-length 
types). 

5 Binary Event API 
 
The binary event encoding was implemented in C, and therefore the NetLogger C API 
was used as a basis for the API. The main reason that C++ was not chosen is that C by 
virtue of being a lowest common denominator is more easily mapped to a variety of other 
languages, allowing APIs in both script languages (Perl, Python, and TCL) and Fortran. 
In addition, the type of low-level coding needed to get maximum speed would probably 
use mostly C idioms (memcpy, & operator, *p++, etc)  anyways.  The current plan is to 
implement the Java API as a Java Native Interface (JNI) wrapper around the C code, 
although a “pure” Java API is also a possibilit y. 
 
Although the general strategy of “wrapping” and using a C library does create 
architecture dependence, it has two advantages. First, there is only one body of code that 
defines the encoding, which makes maintenance easier. Second, if done correctly the 
mapping between the languages can take advantage of the inherent speed of the 
underlying C code. 

5.1 C API 
 
The heart of the C NetLogger API, and the only place where significant changes were 
made, is the NetLoggerWrite() call:  
 



NetLoggerWrite(handle, “event - name”, “Const1=3 
Const2=Hello”, “Var1=%d Var2=%f Var3= %s”, v1, v2, v3)  

 
Note that the format string for both the constants and variables still l ooks like ULM. In 
order to make this call eff icient, several things happen under the hood: 
 

1. The event name is looked up in an internal hash table. If that lookup succeeds, 
steps 2 and 3 are skipped. 

2. A new message object is allocated, and the constant values are copied into it. 
Then the format string is parsed and space is allocated for all the variable values 
(255 bytes is allocated for each string), and their types are recorded as simple one-
byte codes. 

3. This message object is put into the internal hash table using the event name as a 
key. 

4. The values are copied into the existing message object 
5. The message object is ‘serialized’ into an output buffer 

 
The result of this procedure is that on successive calls to NetLoggerWrite, the constant 
and variable format strings do not need to be parsed. In addition, all memory is allocated 
on the first call , and subsequent calls only need to copy from the user’s values into the 
waiting space. 

5.2 Other languages 
 
Note: This section is not complete, pending the completion of the binary APIs in the 
“o ther” languages. 
 
Because the C API uses the varargs library to simulate what in most high-level languages 
would be done with a temporary list object, the mapping from the script languages, and 
particularly Java and (non-varargs) C++, will require some cleverness. The current 
approach of passing a pre-formatted string will not work well , e.g. in Python: 
 
NetLogger.write( “event - name”,  

“Const1=3 Const2=Hello Var1=%d Var2=%f Var3=%s” % 
(v1,v2,v3))  

 
Instead, something closer to the C API will have to be used, with a language-specific 
construct replacing the varargs. Code in the C library will t ranslate all the language-
specific C mappings to a common routine. 
 
The result from this work should be a significantly faster API in almost all l anguages 
(Java being the possible exception). 
 

6 Performance Comparisons 
 



Note: This section is not complete, pending the completion of the binary APIs in the 
“o ther” languages. 
 
This section compares the performance of different binary API’s, both with each other 
and with the ULM encoding. 
 

7 Conclusions 
 
This white paper presented a binary encoding for logging events over the network. Basic 
design choices were discussed briefly, and some implementation details related to the 
APIs were discussed. Eff iciency, both of the code itself and of the programmer time 
needed to create and maintain it, were the guiding design principles. Due to this 
approach, many valuable types of data, such as multi -dimensional arrays, structs, and 
long strings, do not have a simple or natural mapping to this encoding. However, in our 
experience the vast majority of application and system monitoring can be easily 
translated to a relatively small (less than 30) number of simple values for each time-
stamp. Whether this is true in general remains to be seen, but at any rate the binary 
encoding presented here should provide a good basis for evaluating other possible binary 
encodings of event information. 


